
SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Extracting Semantically Meaningful Context
Windows around Class-Specific Keywords

Alexandra Seibicke

SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Extracting Semantically Meaningful Context
Windows around Class-Specific Keywords

Extraktion von semantisch sinnvollen
Kontextfenstern um klassenspezifische

Schlüsselwörter

Author: Alexandra Seibicke
Supervisor: Prof. Dr. Florian Matthes
Advisor: Stephen Meisenbacher, M.Sc.

Tim Schopf, M.Sc.
Submission Date: 15.12.2023

I confirm that this master’s thesis in informatics is my own work and I have documented all
sources and material used.

Munich, 15.12.2023 Alexandra Seibicke

Acknowledgments

I would like to thank deeply my advisors, Stephen Meisenbacher and Tim Schopf, for
guiding me through my thesis, for constant feedback and also brainstorming. Furthermore, I
want to express gratitude to Prof. Dr. Florian Matthes for granting me the opportunity to
write this thesis at his chair. Moreover, thanks also to my friends and family for their support
and encouragement. Special thanks also to my boyfriend, who stood by me and supported
my through challenging times.

Abstract

In our present time, automatic text generation, recognition and translation have become more
and more important. With the rise of chatbots like ChatGPT, the use of artificial intelligence
in natural language has increased drastically. But to use artificial intelligence for natural
language processing, numerous texts have to be pre-processed. Doing so requires annotating
texts and extracting keywords, which must be put in meaningful contexts. A word can contain
various meanings depending on the context, for example “bank” could be a credit institute,
or a shore, or even a verb. To figure out the meaning of a word, a context window must
be set, which is the scope around a word used to identify its meaning. The arbitrariness of
how long a context window may cause ambiguity, which makes extracting meaningful and
useful context windows a significant challenge. This thesis addresses the task of finding such
context windows.

For this purpose, we extract keywords from sentences and implement various approaches
to determine meaningful context windows. We develop pre- and post-processing steps and
evaluate our results. These results can then be used for further by natural language processing
pipelines.

We investigate the current state-of-the-art approaches for Word Sense Disambiguation and
address the question on how these approaches can be combined with clustering techniques
for class-based context filtering. Further, we study what method evaluation approaches are
most appropriate to assess the effectiveness of filtering context windows of sentences and
the cohesiveness of the window extraction. In addition, we investigate which evaluation
approaches are most appropriate to assess the effectiveness of the filtering step and the
cohesiveness of the window extraction.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1
1.1. Motivation . 1
1.2. Research Questions . 1
1.3. Thesis Outline . 2

2. Background 3
2.1. Word Sense Disambiguation . 3

2.1.1. Knowledge-Based Approaches . 3
2.1.2. Machine Learning Approaches . 5

2.2. Overview of state-of-the-art approaches . 9
2.3. Clustering Techniques . 10

2.3.1. Hierarchical Clustering . 10
2.3.2. Partition Clustering . 11
2.3.3. Grid Clustering . 11
2.3.4. Density Based Clustering . 11
2.3.5. Probabilistic Clustering . 11
2.3.6. Exemplar-based Clustering . 12
2.3.7. Combining Word Sense Disambiguation Approaches with clustering

techniques for Context Filtering . 12

3. Related Work 14
3.1. Span Detection . 14
3.2. Masking . 14
3.3. Classifier . 15
3.4. Evaluating Context Windows . 15

4. Methodology 16
4.1. Terminology . 16
4.2. Data set . 16
4.3. Pre-Processing . 17

4.3.1. Future Work . 18
4.4. Manual Approaches . 19

4.4.1. Basic Approach . 19

v

Contents

4.4.2. Naive Approach . 19
4.4.3. Dependency Approach . 21

4.5. Machine-Learning Approaches . 22
4.5.1. Feature Extraction . 23
4.5.2. Random Forest Approach . 24
4.5.3. XGBoost Approach . 25
4.5.4. Gaussian Approach . 27

4.6. Post-Processing . 28
4.7. Classifying context windows back to keywords 28
4.8. Overview of the context windows of all approaches on a straightforward example 29

5. Results 30
5.1. Test Data set . 31
5.2. Cross Validation Data set . 33

5.2.1. Evaluation on data set A . 33
5.2.2. Evaluation on data set B . 34
5.2.3. Evaluation on data set C . 35
5.2.4. Evaluation on data set D . 36
5.2.5. Evaluation on data set G . 37

5.3. Evaluation on data set K . 38
5.4. Expert Evaluation . 39

6. Discussion 42
6.1. Results . 42
6.2. Challenges . 44
6.3. Future Work . 45

7. Conclusion 47

A. Repository Link 49

B. Excerpt of the Overview of all Approaches on five samples 50

List of Figures 51

List of Tables 52

Bibliography 53

vi

1. Introduction

1.1. Motivation

With the rise of chatbots like ChatGPT, the use of artificial intelligence in natural language
has become more and more important in our present time. For automatic text processing,
word disambiguation can be a problematic impediment for training models. Humans often
derive the proper meaning of a word subconsciously by participating in many discussions
over a lifetime. Associating the correct meaning with a word is, therefore, not a trivial task.
Thus, finding, trimming, and evaluating meaningful scopes around a given word of a text
plays a crucial role in numerous tasks in the natural language processing field.

This thesis is part of the pipeline of the CreateData4AI (CD4AI) project1. The project aims
to develop a framework that helps domain experts annotate text using Natural Language
Processing algorithms[1]. This is conducted in several sub-tasks:

1. Keyword Extraction Domain experts first define classes used to extract keywords with
unsupervised techniques. Further, related words and phrases are suggested.

2. Context Window Extraction To associate a correct meaning of the keywords given a
text, meaningful context windows are extracted.

3. Context Rule Creation Domain experts will further evaluate these windows and select
those that best describe the meaning, creating context rules. This will serve as a basis
for automated data set creation.

4. Extrapolation The last step uses the set of context rules and extrapolates a finite set of
rules for a theoretically infinite number of unseen documents.

1.2. Research Questions

For this thesis, we will investigate the following research questions:

• RQ1: What are the current state-of-the-art approaches for Word Sense Disambigua-
tion?

1CreateData4AI. url: https://wwwmatthes.in.tum.de/pages/nqpi6qljq0x9/CreateData4AI-CD4AI (visited
on 12/07/2023).

1

https://wwwmatthes.in.tum.de/pages/nqpi6qljq0x9/CreateData4AI-CD4AI

1. Introduction

For the first research question, we will research exhaustively different approaches and
conduct a brief overview.

• RQ2: How can these approaches be combined with clustering techniques for class-
based context filtering?

To answer the second research question, we will first explore different clustering tech-
niques for class-based context filtering and evaluate them on our use case. Next, we
will discuss how to combine clustering techniques with Word Sense Disambiguation.

• RQ3: What methods can be leveraged to trim meaningful context windows from text
chunks containing keywords?

The third research question will be answered by inspecting different methods we came
up with and discussing challenges and alternatives.

• RQ4: Which evaluation approaches are most appropriate to assess the effectiveness
of the filtering step and the cohesiveness of the window extraction?

The last research question will be examined at the end of the thesis together with a
comprehensive evaluation of our approaches.

1.3. Thesis Outline

This thesis is structured in seven chapters.
The first chapter introduces the motivation for this thesis, presents the research questions,

and offers an overview of the structure.
The second chapter establishes background information by introducing the current state-of-

the-art approaches for Word Sense Disambiguation and, therefore, answers the first research
question and introduces context windows. Further, we conduct exhaustive research on
clustering techniques and answer the second research question.

Subsequently, the third chapter introduces related works and evaluates these in our use
case.

The third research question is answered in the fourth chapter, which introduces several
approaches which are compared on a simple example as well.

In addition, the fifth chapter presents the results and answers the last research question by
evaluating the presented approaches. In addition, an expert evaluation is conducted.

The sixth chapter provides a discussion about the results, challenges and future work, and
the last chapter presents an overall conclusion of this thesis.

2

2. Background

In this chapter, we will establish some background information needed for the further course
of this thesis. We will first talk about Word Sense Disambiguation and answer the first
research question, we will introduce clustering and clustering techniques, and conclude with
answering the second research question.

2.1. Word Sense Disambiguation

Many words in the human language have ambiguous meanings, for example, a "bank" can
be a financial institution or an edge of a river. To get the correct meaning of the word, we
humans rely on a "context" embedded in further words or sentences beneath the desired
word. Often enough we also know the different meanings of a word and just assume one
meaning since the other meanings do not make "sense".

We have to rely on alternative approaches for machines to get the proper meaning. Word
Sense Disambiguation can be summarized as follows by Navigli et al. [2]:

The computational identification of meaning for words in context is called word
sense disambiguation (WSD).

Mallery [3] also describes WSD as an AI-complete problem which means it is equivalent to
the Turing Test.

Navigli [2] further provides us with the following definition of a WSD:
When viewing a text as a sequence of words without punctuation, WSD is the task of

finding a mapping from these words to the senses. The mapping should be a subset of the
available senses of the word.

Ideally, the mapping should represent one sense for each word, but it can also be more
senses per word.

2.1.1. Knowledge-Based Approaches

For finding available senses to a word, external knowledge sources like Thesaurus, Ontologies,
and so on are created that use the word and its context to find suitable mappings. A famous
lexicon for words is the Princeton database WordNet [4], which contains a wide range
of synonyms of words and more. To find the context of a word, it is necessary to first
preprocess the word, for example with tokenization, part-of-speech tagging, lemmatization,
and more. The advantages of knowledge-based approaches include robustness to noisy data

3

2. Background

and interpretable outcomes. However, it heavily relies on expert knowledge and provides
limited scalability.

There are various Knowledge-Based Approaches like Lesk’s algorithm, Walker’s algorithm,
Selectional Preferences, to name a few. In the following sections, we will introduce some
algorithms and approaches.

Lesk Algorithm

Lesk Algorithm was developed by Michael E. Lesk in 1986 [5]. The algorithm merely counts
the number of overlaps between all dictionary definitions of a word and the words surround-
ing it excluding stop words. Stop words are words like "the", "a", "and" [6]. These words
surrounding a word are also called a "context window".

For example, Lesk shows that a pine is a “kind of evergreen tree with needle-shaped
leaves.. .” by definition of the Oxford Advanced Learner’s Dictionary of Current English, and
cone is a “fruit of certain evergreen trees...” [5]. In both definitions, evergreen and tree are
used to define these words, indicating they are similar hence if we consider a text containing
pine and cone in a context window, a program can conclude the word "pine" is likely a tree [5].

Although easy to implement and generalize, this algorithm has low accuracy (around
50-70%) and low recall since many words have similar meanings, but no overlap in definition
[6]. The algorithm has since been developed by multiple researchers, like Viveros-Jiménez et
al. [7] who proposed to adapt the context window by removing the target word and more.
Also, WordNet [4] was inspired by the Lesk algorithm.

Semantic Similarity

In essence, semantic similarity uses a knowledge base of all available senses of a word. Now
given a word in a text, we collect the senses of all words in a context window except the
target word and sum the contribution of the most appropriate sense of each word. The sense
with the highest sum is chosen [2].

Many adaptations of this method have been implemented since, for example, Rada et al.
[8] calculated the shortest distance in WordNet [4] between pairs of word senses [2].

Mittal et al. [9] used an Ordered Weighted Averaging Operator (OWA) to calculate the
senses and later used an expert evaluation to further optimize the algorithm.

Selectional Preferences

For each word, semantic relationships are collected and inappropriate senses of words are
excluded leaving only senses that align with established rules. The occurrences of word pairs
with syntactic relations are counted and the word sense with the most common frequency is
selected [10].

4

2. Background

Heuristic Approaches

Additionally, heuristic approaches can be used for Word Sense Disambiguation. According to
Gujjar et al. [10], there are three types of heuristics:

1. Identifying all possible word senses with the assumption that one particular sense
occurs more frequently than others.

2. A word occurring multiple times in a text is likely to maintain the same meaning.

3. Nearby words can indicate the correct meaning of a word.

Walker’s Algorithm

Walker’s Algorithm uses a thesaurus to assign each sense of a word a thesaurus class. The
context in which a word appears is used to match it with a thesaurus category [11].

Graph-Based Methods

Graph-based methods explore the possibility of a relationship between words. For example,
an "Is-A" relationship chain could be "Apple" "Is-A" "Fruit" "Is-A" "Plant". A graphic version
is shown in figure 2.1.

Figure 2.1.: An "Is-A" relationship of an apple

This is also explored by adding other relationships, such as "Kind-Of" or "Is-Like".

Based on this approach, Galley and McKeown [12] developed an algorithm that first builds
a graph where all possible senses of a word are connected with the word. Next, if the senses of
a current word are connected with the senses of a previous word, a connection is established
between the appropriate words and senses. For deciding the meaning of a word, its senses,
and their respective connections are summed by giving the sense the highest score that has
the most connections chosen as the proper sense.

2.1.2. Machine Learning Approaches

One major separation of Machine Learning Techniques is supervised vs unsupervised learn-
ing. In supervised learning, a labeled data set is needed and we train the model to predict the

5

2. Background

corresponding label of a datum. The focus is on learning the relationship between input and
output data. Classification and regression can be solved with supervised machine learning.
Supervised learning often leads to high accuracy and is suitable for a variety of problems that
lead to the development of many well-established algorithms. However, it can be sensitive to
outliers and noise. In addition, it lacks generalization and is not scalable, since it requires
labeled data [10].

In unsupervised learning, we train the model without labeled data and allow the model to
discover new patterns and relationships. This learning type is typically used for clustering or
association. Since no annotated data is needed, it can overcome the limitations of Supervised
Machine Learning and Knowledge-Based Approaches. However, it performs often worse than
Supervised Machine Learning approaches. Additionally, interpreting results can be difficult
[10].

Semi-supervised learning contains both labeled and unlabeled data. It can be used for
classification and regression tasks. Since this approach is a combination of supervised and
unsupervised techniques, it can improve the performance of limited labeled data. However,
obtaining and managing labeled data may be difficult and it may not outperform the former
approaches. In addition, it may suffer from error propagation due to incorrect labels [10].

In the following sections, we will introduce the most important approaches of different
machine learning techniques with a focus on the techniques we used for our approaches.

Decision List and Decision Tree

Rivest [13] introduced decision lists as an easy list of if-else statements. A simple example
can be shown in 1.

Algorithm 1 A simple Decision List

if f1 then
output b1

else
if f2 then

output b2
end if

end if

A decision tree consists of decision lists ordered in a tree-like structure. We first begin
with a simple decision function, and depending on the output of the function, a subsequent
function is evaluated, as shown in figure 2.2.

6

2. Background

Figure 2.2.: A simple Decision Tree

In further chapters, we will use a RandomForest Classifier for our task. RandomForest is
a strategy where multiple decision trees are combined to increase accuracy, making them
sometimes the best performing types of classifiers [14]. Additionally, only a subset of features
is considered for each condition evaluation making each tree marginally different.

Further, we use XGBoost as an alternative to RandomForest. It works similarly to Random-
Forest, but each decision tree learns from the tree before and is trained only on the data that
the last tree did not perform well [14].

Naive Bayes

Machine learning models can utilize the Bayes Theorem for prediction using prior predicted
data and the new information for the given data.

Using Bayes’ theorem, we can calculate the posterior from prior knowledge given data, as
you can see in equation 2.1.

P(θ|D) = P(θ)
P(D|θ)
P(D)

(2.1)

Martins [15] further explains that the Gaussian classification assumes that each class follows
a normal distribution and that the parameters that predict the output are independent.

Support Vector Machines

Another approach that has gained much attention in recent years is support vector machines.
A support vector machine (SVM) aims to identify a hyperplane that isolates classes with
the highest possible margin, i.e., the maximum distance between data points of both classes.
Support vectors represent data points lying closest to the hyperplane.

7

2. Background

Neural Networks

Neural Networks consist of pairs of input features and the desired response that is processed
by node layers containing an input layer, one or more hidden layers and an output layer. Each
layer consists of nodes connected to one another and has an associated weight. An example
illustration is provided by figure 2.3.

Figure 2.3.: A Neural Network [16]

Convolutional Neural Networks (CNNs) in NLP use filters and strides to process n tokens
of a given sentence. Intuitively, the first layers capture and learn more primitive features and
deeper layers detect more complex and more detailed features [17].

Recurrent neural networks (RNNs) use feedback loops to predict future tokens using the
previous outputs of the network [18]

In Graph Neural Networks (GNN), text is represented as a graph, with nodes denoting
words, and edges denoting relationships between words [18].

Context and Word Clustering

Context and Word Clustering are both techniques that are used in unsupervised machine
learning.

Martin-Wanton et al. [19] implemented context clustering that represents words through
context vectors that are organized into clusters with each cluster corresponding to a word
sense. A word is transformed into a vector and captures the frequency of its co-occurrences
with other words. By applying clustering techniques, a final sense can be assigned to a word
[10].

Word Clustering denotes the grouping of words that are semantically similar together.
There are various measurements for similarity available, but often features of words are
analyzed, like part of speech tag and more. Clustering techniques can be used to classify
meanings.

8

2. Background

2.2. Overview of state-of-the-art approaches

To understand current trends and techniques, establishing a background is needed which
we presented in the previous sections. In this section, we propose some of the most notable
techniques and current research in recent years.

First, we want to include some notable databases and data sets. Although it is a rather
old database, WordNet [4] is still a popular database, since it is well established with many
entries.

Recently, BabelNet [20] gained interest with its semantic network where nodes are multilin-
gual synsets [21].

SemCor [22] contains annotated data and is still used today, and for evaluation, different
data sets called SensEval and SemEval are available that are still being further developed. For
non-English languages, local and customized data is often required and for many languages,
there is not a well-established database available [21].

As for approaches, pre-trained language models gain more and more attention and gen-
erate promising results. Many knowledge-based methods are completely outperformed by
machine learning models and, therefore, not relevant for today’s state-of-the-art research [21].
Nevertheless, many models use knowledge-based techniques as a basis or for improvements
of their predictions [21]. Therefore, it is necessary to first gain an understanding of these
techniques before we can dive into recent developments.

For these models, it is also crucial to develop more data as many models see significant
improvements when training on more data as well as adding diverse information [21].

As for specific techniques, BERT [23] (Bidirectional Encoder Representations from Trans-
formers) and GPT [24] (Generative Pre-trained Transformer) have gained a lot of attention in
recent years. BERT is used as a pre-training step and consists of an encoder that processes a
sequence of words at once and learns the context of a word. Whereas GPT takes n tokens and
predicts one output and with a lot of data and training, can become incredibly powerful [24].

These approaches are further developed such as RoBERTa, XLNET, Chat-GPT, and more.
According to Bevilacqua et al. [21], SREFKB and ESCHER belong to the best-performing
models.

Another powerful approach is to ensemble methods that combine the predictions of multi-
ple models to increase accuracy and robustness. However, the overhead and complexity can
increase drastically and represent major challenges [25].

Further, techniques like attention [26] gain popularity which allows models to focus only
on specific parts of the sentence. Attention concentrates on the parts with the most relevant
information concentrated.

9

2. Background

Despite recent improvements in Word Sense Disambiguation, this problem is not solved.
Especially for multi-language tasks, more research, databases, and evaluation are needed [21].

2.3. Clustering Techniques

Clustering Techniques can be used to identify related points or objects and their relationships.
The exact type of relation can be very diverse, it can be classified based on features as well as
measuring the distance of points.

A first distinction of clustering techniques can be soft and hard clustering. Hard clustering
denotes that a point is either in the class or not, whereas soft clustering categorizes a point in
a class through a probability [27].

Further, Rai et al. [27] describe the following various kinds of clustering:

• Well-separated clusters: Any point in this cluster is closer to every other point in this
cluster than any point not in the cluster.

• Center-based clusters: Any point in this cluster is closer to the center of this cluster than
to the center of any other cluster. This center is also often called a "centroid".

• Contiguous clusters: Any point in this cluster is closer to one or more other points in
this cluster than to any point not in the cluster.

• Density-based clusters: A cluster is described as a dense region of points that is
separated by low-density regions.

• Shared Property or Conceptual Clusters: Points in a cluster share a common property
of a concept.

• Described by an Objective Function: A cluster is described by an object function that is
minimized or maximized.

Common challenges in creating clusters are handling outliers, scaling, handling noise, and
more. Therefore, selecting appropriate clustering techniques for a given task is not trivial. In
the following sections, we will introduce some of these techniques.

2.3.1. Hierarchical Clustering

Hierarchical clustering aims to build a hierarchy of clusters through a series of partitions.
The advantages of hierarchical clustering are embedded flexibility regarding the level of

granularity, easy handling of various forms of similarity, and easy application.
Nevertheless, it may be challenging to establish a clear termination criterion, and most

algorithms do not revisit the clusters for improvement [28].

10

2. Background

Agglomerative Clustering

For Agglomerative Clustering, each data point is first assigned to its own cluster merging
together to form final clusters [28].

2.3.2. Partition Clustering

Partitioning Clustering, on the other hand, decomposes data into clusters with each cluster
being represented by a centroid.

K-Means

An established implementation of partition clustering is K-Means. Given the data, the goal is
to find k clusters each with a centroid calculated by the mean of the cluster. This is repeatedly
optimized until the centroids do not change.

Limitations of the algorithm occur when clusters are of different sizes, densities, or shapes
and also when the data contains outliers.

2.3.3. Grid Clustering

Grid clustering focuses on building geometric structures of an object in the space, their
relationships, and properties. The goal is to develop several hierarchical levels of groups of
objects [27].

2.3.4. Density Based Clustering

Density Based Clustering analyzes the data on densities and creates clusters accordingly.

DBSCAN

DBSCAN is a density-based clustering algorithm that handles outliners very well since it
groups ’densely grouped’ data points into a single cluster [28].

2.3.5. Probabilistic Clustering

Probabilistic Clustering assumes the data is distributed according to one or multiple specific
distributions. It classifies the data according to whether they belong to a specific distribution
or not [28].

Gaussian Mixture Models

Gaussian Mixture Models (GMM) assumes the data is generated by Gaussian distributions
[28].

11

2. Background

2.3.6. Exemplar-based Clustering

In Exemplar-Based Clustering, the goal is to identify representative data points, and each
data point is associated with an exemplar [29].

Affinity Propagation Clustering

In Affinity Propagation Clustering, data points communicate with each other and clusters are
created by comparing similarities between points. The data points exchange messages and
form a consensus on how to create clusters [28].

2.3.7. Combining Word Sense Disambiguation Approaches with clustering
techniques for Context Filtering

Context filtering is essential for Word Sense Disambiguation. Take a look at the following
examples:

"I am going to the bank to withdraw money".
"The fishermen set up their camp on the lush green bank of the river".
Finding the correct context window that embeds the context to define the meaning of the

word "bank" is not trivial. It is necessary to set the context window size large enough to
include keywords like money or river.

But it is also essential to set the context window not too large since false clues can be
included, and given a context window, finding the corresponding class can be difficult.

As explained previously, Martín-Wanton et al. [19] showed how context clustering can
be used for the problem of word sense disambiguation. The key idea is to use clustering
techniques to assign a final word sense from a vector of word senses.

Further, Dolan [30] describes the problem that some words do not have an obvious mapping
in some sense. Some words may be mapped to multiple or none senses, and with the increas-
ing complexity of available senses to a word (for example by using multiple dictionaries), the
probability for multiple senses increases, whereas for a too-small selection of senses, none
senses may be assigned. Clustering is a suitable technique to approach this problem. The
combination and clustering of the senses for words according to multiple dictionaries can
give a rough indication of the semantic connections between two entries.

In our data set, we have more than 2 million descriptions and more since a description can
contain multiple or no keywords. Therefore, it is necessary to use a clustering technique that
can handle big data. Further, we know priory how many clusters we need, that is, 21 for all
21 keyword classes. Therefore, we conclude the k-means algorithm is suitable for our use case.

However, in our version, we have a well-defined small set of keywords that do not overlap.
Sentences without a keyword are ignored. Nonetheless, the new version of seed keywords

12

2. Background

has a wide range of available keywords per class, so this will be a problem for future work.
Still, we implemented a small method that can be used for future work using k-means, as
explained in the methodology chapter.

Another problem where clustering can be utilized is assigning a context window to the
corresponding keyword class and finding the keyword. That means to essentially classify the
context windows back to classes and detect the keyword. Again, our method can be used for
this task as explained in the methodology chapter.

13

3. Related Work

Using context windows to classify a text into categories is a difficult problem statement in the
context of spam detection, fake news detection, and similar. Older research only focuses on
given classifications like is-spam and non-spam and fails to incorporate the context the words
are in.

Nevertheless, recent research acknowledges the need for context in classification problems,
and in this chapter, we will highlight notable research and methods.

3.1. Span Detection

Detecting context windows can be redefined in detecting the start and end of a span. Joshi
et al.[31] introduced SpanBERT which is a self-supervised pre-training method that uses
BERT to predict spans of text. They repeatedly outperformed BERT on tasks like question
answering and coreference resolution. The authors introduced the auxiliary objective SBO
which tries to use only the representations of the tokens at the span’s boundary to predict the
span.

Sung et al.[32] created a multi-task stacked Bi-LSTM to detect antecedents and consequent
conditional statements. Similarly, Pavlopoulos et al. [Pavl] work on detecting toxic spans.

3.2. Masking

An alternative approach to detecting a token window includes masking. Masking is the
process of masking one or more tokens of a sentence and the model predicts the masked
words. This can be used to mask a context window that needs to be predicted.

Sun et al. [33] created ERNIE which aims to learn entity-level masking and phrase-level
masking.

MASS is a sequence-to-sequence pre-training method for encoder-decoder-based language
generation proposed by Song et al. [34]. Given the remaining part of the sentence, MASS can
generate the missing sentence fragment.

Chan et al. [35] presented KERMIT, an insertion-based framework that can generate text
and sequences.

14

3. Related Work

3.3. Classifier

Mugdha et al. [36] built a classifier for Fake News Detection in headlines in Bengali. They
achieved using the Gaussian Naive Bayesian Classifier an accuracy of 87%. They used TF-IDF
for feature extraction and an additional tree classifier.

Kundu et al. [37] developed a model for the identification of non-standard words (NSW) in
the Bengali news corpus. For example, ‘1998’ could be a year or a number. What is notable
about their research is that the researchers have to create suitable context windows to classify
the words correctly. However, the size of the context window depends on the semiotic classes
and they struggle with the complexity of the Bengali language.

Instead of only considering words associated with abuse, Menini et al. [38] recognized that
context is important to classify a word as abusive or not. The researchers compared annota-
tions with context and without, and while context-aware training is more challenging than
word classification based on simple matches, the researchers also concluded it is necessary
for classifying certain text phrases as abusive or nonabusive.

Similarly, Masood et al. [39] aimed to classify tweets using past history. Their best-
performing model (LSTM) uses all available features (like the past history of 24 hours), which
emphasizes the need for context in classification tasks.

3.4. Evaluating Context Windows

Lison et al. [40] researched context windows dependent on the hyperparameters maximum
windows size, weighting scheme, window position, and stop words removal. They trained
continuous Skip-Gram models on two English-language corpora and evaluated the models
on lexical similarity and analogy tasks. They concluded that the presence of cross-sentential
context and right-side context windows leads to superior context windows.

15

4. Methodology

In this chapter, we will initially introduce basic terminology and the data set and then outline
the pre-processing steps. We will introduce different manual approaches that we implemented
and introduce machine learning approaches. We will talk about labeling the data set, feature
extraction, and post-processing steps. Lastly, we will compare the context windows of all
approaches on a straightforward example.

4.1. Terminology

For this chapter, it is essential to establish certain terms:

• Token: A token is a word, punctuation, symbol, etc. in a sentence. We do not regard
whitespaces as tokens.

• Stop words: Stop words are not meaningful tokens in a sentence. This can be punctua-
tion, but also words like "aus", "gegen", "einer", "zum", "man", "ganz", . . . We will use
the spaCy1 collection of German stop words to identify stop words.

• Class: A class is a predefined set of items. In our thesis, we use the classes provided by
the previous step in the pipeline, and each class contains keywords that are semantically
related.

• Keyword: In our thesis, we refer to the specific words in the classes as keywords and
matched keywords are keywords that are represented in the description but not in the
classes. A matched keyword contains a keyword, for example, "Handelskammer" is the
matched keyword of "Handel".

4.2. Data set

The data set German Business Registry consists of over 2,3 million entries, with varying
descriptions of the purpose of the businesses. The descriptions are different lengths, so
one challenge was to find context windows that cover enough context for lengthy sentences
spanning over five lines as well as short sentences containing under 10 words. Figure 4.1
captures a small part of the German Business Registry data set.

1spaCy. url: https://spacy.io/ (visited on 12/02/2023).

16

https://spacy.io/

4. Methodology

Figure 4.1.: Example of the German Business Registry data set

The seed keywords we use are created in the previous step of the pipeline of the Create-
Data4AI project. They are classified into 21 classes, ranging from A to U with 15-20 keywords
per class. We worked with a primary version of the keyword set, the final version contains a
wider range of words than the version we used for training and evaluation. If the keyword
consists of more than one word, we disregard the keyword. Figure 4.2 shows some examples
of seed keywords.

Figure 4.2.: Example of Seed Keywords

4.3. Pre-Processing

First, we have to examine the descriptions for keywords and match the corresponding
description.

We accept not only exact matches, but also partial matches. For example, if the keyword is

17

4. Methodology

Handel, then suitable matches would be Handels, verhandeln or Einzelhandel but not Händler or
Markt. These matches with their corresponding sentences are collected in a data frame.

Further, we use the open-source library spaCy2 to pre-process a given sentence. SpaCy
removes white spaces, tokenizes the sentence, performs part of speech tagging on each token,
parses the dependencies between tokens, and more.

As explained, our keywords and the matches are quite straightforward with no overlapping
of keywords in classes. Therefore, we can simply use the whole sentence given the keyword
for further processing. Nonetheless, in the next section, we explain how clustering can be
utilized for overlapping classes.

4.3.1. Future Work

We implemented a small method that processes a sentence and creates features by counting
how many times a keyword in this sentence belongs to a certain class.

For example, the sentence "Gegenstand des Unternehmens sind die Herstellung, die Verar-
beitung, der Vertrieb und die Vermittlung von Formaten und Verpackungen aus Wellpappe
und deren Zubehör sowie der Handel mit diesen Produkten und artverwandten Produkten
sowie von Erzeugnissen zur Ergänzung oder Förderung dieser Tätigkeit." contains "Her-
stellung" which belongs to the class C and "Handel" which belongs to the class G. So this
sentence contains one keyword of class B and one of class C.

For overlapping keywords, it may be necessary to create chunks of sentences instead of
processing the whole sentence for the models to determine the correct context.

Manual approaches like the Dependency Approach or Naive Approach can be utilized to
create these chunks.

Another possibility could be to create N-Grams of the sentences and filter these N-Grams
whether they contain the keyword. To evaluate which approach is more suitable, more
research and investigation is necessary.

In a jupyter notebook, we can process sentences or chunks with the help of our method,
creating a vectorized dictionary of features and using k-means to cluster the sentences and
assign a class to each sentence. We tested it on some examples of our data set and we got
good assignments. This can be used to create a data set where sentences or parts of a sentence
are assigned to a class. As mentioned, we did not use this for our approaches since it was not
necessary, but it can be used for future work.

In the next sections, we describe our approaches after pre-processing.

2spaCy. url: https://spacy.io/ (visited on 12/02/2023).

18

https://spacy.io/

4. Methodology

4.4. Manual Approaches

4.4.1. Basic Approach

An intuitive approach to discover context windows would be to simply regard the x number
of words beneath the keyword.

For example, the context window of the sentence "Lieferung, Handel, Planung und Ferti-
gung von Maschinenkomponenten sowie Stahlkonstruktionen." with the keyword "Handel"
would be "Lieferung, Handel, Planung und" with x = 3. Therefore, the context window
contains two tokens to the left, the keyword, and three tokens to the right. As you can see in
this example, the context window ending can be optimized by setting x = 2 and therefore
removing the token "und".

We experimented with different context window sizes and first examined the keywords of
the class G that contained keywords like Handel. By examining the context windows and the
location of the keyword in the sentence we discovered that quite often the keyword is in the
beginning of the sentence.

Hence it could make sense to not establish the context window x words left and right of
the keyword, but to adopt a more flexible approach and shift the windows to one word on
the left side of the keyword and three words on the right side.

However, this phenomenon does not consistently occur with the other keyword classes, for
example for the class K which consists of keywords around the topic insurance, the keyword
is often in the middle of the sentence or near the end.

Another problem with this approach is the descriptions are of very varying lengths. So by
simply regarding the x words around the keyword, for lengthy sentences only a small part
of the sentence is covered, and therefore, it is not guaranteed that enough context will be
captured. On the other hand, for short sentences, this could mean that the whole sentence is
included in the context window. Therefore, we conclude this approach is not very suitable for
our use case.

4.4.2. Naive Approach

The open-source library spaCy3 offers powerful tools to pre-process a sentence and tokenize
the sentence, obtain the Tag of Speech of each token, obtain the noun phrases, and many more.
For our use case, we will regard the dependency parser of spaCy.

First, the dependency parser of spaCy determines the root word of a sentence, then in a
tree-like structure each word may have children connected with their respective head by
dependency arcs. These arcs are labeled by the term dep which describes the syntactic relation
between head and children. Each token may have children but it always has a head with the

3spaCy. url: https://spacy.io/ (visited on 12/02/2023).

19

https://spacy.io/

4. Methodology

head of the root being itself.

A simplification of the naive approach can be summarized in the following algorithm (2):

Algorithm 2 The Naive Approach Algorithm

(matched_keyword, description)← f ind_matches(seed_keyword, data f rame)
context_window← 2 tokens beneath the keyword
for each token in context_window do

context_window← append children and head of token
end for

Note that in the proposed algorithm (2), we purely consider the immediate head and chil-
dren of each token in the context window. We also experimented with considering including
the children of the children and so on (i.e. doing more than one "jump") but this frequently
lead to the same context window.

So the context window of the sentence "Lieferung, Handel, Planung und Fertigung von
Maschinenkomponenten sowie Stahlkonstruktionen." with the keyword "Handel" would
be "Lieferung, Handel, Planung und Fertigung" with three tokens beneath the keyword as
maximum jump. This is a better context window than the baseline approach, since it does not
end with a conjunction and contains the whole context of the sentence. An overview of the
context windows of this sentence by all approaches is also shown at the end of this chapter.
Additionally, figure 4.3 shows the dependencies of the proposed sentence. The token "von" is
not included in the window since it would exceed the three tokens beneath the keyword limit.

Figure 4.3.: Example of a context window with the Naive Approach

This mechanism turns out to be quite useful to overcome the problem of the difference in
the sentence lengths we experienced in the data set. So especially for long sentences, even
words that are further away from the keyword can be considered if there is some sort of
syntactic relationship to the keyword. Simultaneously, short sentences can have a relatively
small context window compared to the sentence size.

By further examining the context windows, we see that the tokens that are already included
by the first jump have seldom further children that are not yet included.

20

4. Methodology

This is also a result of the problem of how to find the optimal initial number of neighbors
that should be directly included in the context window. There is nevertheless a problem that
the context windows of short descriptions are too big and of long descriptions too small.

4.4.3. Dependency Approach

One solution to overcome the problem described in the Naive approach is to omit the number
of neighbors considered in the context window altogether.

Therefore, instead of having a fixed window size, we can fix the number of jumps. Now we
can establish a first context window dependent on the sentence length since large sentences
tend to have their furthest children further away than short sentences.

This approach is described in the algorithm (3):

Algorithm 3 The Dependency Approach Algorithm

(matched_keyword, description)← f ind_matches(seed_keyword, data f rame)
context_window← head and children of keyword
for each token in context_window do

if token is a stop word then
context_window← append children and head of token

end if
end for
context_window← all tokens between the borders of the context window

So the context window of the sentence "Lieferung, Handel, Planung und Fertigung von
Maschinenkomponenten sowie Stahlkonstruktionen." with the keyword "Handel" would be
"Lieferung, Handel, Planung" with only one maximum jump. Increasing the jumps in this
sentence to reach the token "Fertigung" would yield a significantly big context window since
we use the jump to the token "von" which would be not optimal, as shown in figure 4.4.

Figure 4.4.: Example of a context window with the Dependency Approach

We additionally inspect more context windows more closely and conclude that increasing
the number of jumps does often not yield to different context windows, since a context
window already consists of all tokens between the both farthest tokens. An increase of jumps
naturally leads to small jumps in the middle of the context window and the farthest tokens
often are reachable within one jump and do not have further children.

21

4. Methodology

Nevertheless, with considering only one jump there may remain some cases where the
jump "stops" at not meaningful tokens, such as commas and colons, i.e. stop words. Therefore,
when the farthest token is a stop word, we jump another time. Note that spaCy already sorts
the children of a token by their index.

4.5. Machine-Learning Approaches

As explained in the background chapter of this thesis, context windows can also be discovered
by Machine Learning Algorithms. In our case, we will use supervised machine learning
methods since we classify each token as "in context window" or "not in context window", i.e.
as ’1’ or ’0’.

Labeling

As we use supervised Machine Learning Approaches, we require labeled data to train on. For
this purpose, we use the keyword classes A, B, C, D and G and extract 150 descriptions per
class. Additionally, we extract 50 descriptions of the class K.

We use Prodigy4 to label each description with the keyword, the context window, the start
of the context window, and the end of the context window. We will use these annotations to
create an ideal label we can later use for training.

Approaches

There are different approaches possible on how exactly the models should predict a context
window.

The first approach we implemented is to predict the start and the end of the context window.
This approach yielded rather obscure context windows because of the variety of the data
set and "optimal" context windows. Some sentences are extremely long and have therefore
long context windows, and some are relatively short with short context windows, however,
that may cover almost the whole sentence. In addition, the keyword may be at the beginning
or at the end. Overall, this approach turned out to be not optimal given our data. By only
predicting the start and the end, we have just 2 tokens that get classified in one class, and
all other tokens are classified in another class. Machine Learning models struggle to learn
the start and end because of the lack of different features of many tokens and the varying data.

The second approach is rather a classification problem where we classify each token as
whether it is a part of the context window or not. Now, many tokens can be classified in one
class which leads to more features for the machine learning model to learn. By experimenting
and observing some example data, we conclude that this approach is more suitable for our
data set.

4Prodigy. url: https://prodi.gy/ (visited on 12/02/2023).

22

https://prodi.gy/

4. Methodology

4.5.1. Feature Extraction

For creating the data set we later train on, it makes sense to not consider the text of a word,
but rather its features like the dependency label of the token, the index of the token in the
text, how far the token is comparing to the keyword and so on. This also lead to a better
generalization.

Therefore, the first step is to find meaningful features and create a data set. In the following,
we list the features we utilized:

• dep_: Syntactic dependency

• pos: Part of Speech

• tag: Detailed Part of Speech Tag

• n_lefts: Number of tokens that are to the left of the token

• n_rights: Number of tokens that are to the right of the token

• is_stop: Is the token a stop word?

• is_start: Does the token start a sentence?

• is_end: Does the token end a sentence?

• is_ascii: Does the token consist of ascii characters?

• is_alpha: Does the token consist of alphabetic characters?

• is_lower: Is the token text in lowercase?

• is_child: Is the token a child of the keyword?

• is_head: Is the token the head of the keyword?

• sentence_length: Length of the sentence

• index_of_keyword: Index of the keyword

• distance_to_keyword: Euclidean distance between keyword and token

• child: Index of the token’s first child

• head: Index of the token’s head

• shape: Shape of the token (like xxxx, XXX)

• in_sentence: Is the token in the same sentence as the token?

To feed the features in a Machine Learning Model, we have to transform the features into a
numerical representation using Dictvectorizer of the scikit-learn library.

For each approach, we mix the data set and use a split of 90% training data and 10%
validation data.

23

4. Methodology

4.5.2. Random Forest Approach

For the first approach, we use the Random Forest Classifier of the scikit-learn library. The
algorithm uses decision tree classifiers on various sub-samples of the data set and averages
the results.

We train the Random Forest Classifier on the training set and inspect some context win-
dows. Additionally, we inspect the features of the Random Forest Classifier. As expected,
some features are simply not as important for context windows classification as other features.

In a decision tree, a feature is more important than another feature if it decreases the
impurity strongly. This can be averaged and a final importance can be computed. We can
set a threshold, for example 0.0115, and merely consider the features above the threshold.
For better comparisons in later steps, we can print kept features and include an additional
method that eliminates withhold features in future data set pre-processing. A visualization of
the feature’s importance is shown in figure 4.5.

The most important features are distance to keyword, sentence length, index of keyword,
is child, child, head, is head and in sentence. The least important features contain different
shapes and tags.

24

4. Methodology

Figure 4.5.: Feature Importance of the Random Forest Classifier

Further, we optimize the validation set by using randomized search on hyper parameters
by scikit-learn. We use varying numbers of estimators from 50 to 1000 and additionally vary
the maximal depth from 1 to 150.

The randomized search includes a 5-fold cross-validation and yields an optimal number of
estimators of 700 and a max depth of each tree of 10. By using these hyperparameters, we
achieve a mean cross-validated score of 0.932 on the validation set.

4.5.3. XGBoost Approach

Similar to the Random Forest Classifier, XGBoost uses decision trees as a learning algorithm
combined with gradient boosting.

Once more, we train our model on the training set and optimize on the validation set using
a randomized search on hyperparameters by scikit-learn. The hyperparameter distribution

25

4. Methodology

includes varying maximal depth from 1 to 150, learning rates from 0.1 to 0.0001, sub-samples
from 0.5 to 1, and a number of estimators from 50 to 1000.

By inspection of the feature importance, we discover they are similar to the Random Forest
Approach with several unimportant features that we can remove, the remaining features are
shown in figure 4.6.

The most important features are distance to keyword, part of speech tag punct, dependency
punct, index of keyword, is child, in sentence and several tags and pos.

Figure 4.6.: Feature Importance of the XGBoost Classifier

The best set of hyperparameters includes a subsample of 0.7, a number of estimators of
100, a maximal depth of 80, and a learning rate of 0.01. Using these hyperparameters, we
achieved a mean cross-validated score of 0.934 on the validation set.

26

4. Methodology

4.5.4. Gaussian Approach

The second approach uses the Gaussian Classifier of the scikit-learn library based on Laplace
approximation. We use the default kernel "1.0 * RBF(1.0)” with RBF being the Radial basis
function kernel as described in (4.1) by Sreenivasa [43].

K(x, x′) = exp
(
−∥x− x′∥2

2σ2

)
(4.1)

Additionally, we adapt the features by using the permutation importance of the scikit-learn
library and calculate the mean of each feature. As a result, many features are not relevant
and some features decrease the accuracy of the predictions. The remaining features and their
mean are shown in figure 4.7.

Figure 4.7.: Feature Importance of the Gaussian Classifier

27

4. Methodology

4.6. Post-Processing

Although the scores on the validation sets are already quite high, by further inspection of the
data we see there are, nonetheless, some problems occurring:

For example, the Gaussian Approach does sometimes not include the keyword in the
context window when tested on a very different data set. In addition, some context windows
contain "holes", so a single token in the middle may not be categorized as part of the context
window, for example, if the token contains a very specific character that not many descriptions
have, like "§". For these purposes, we decided to implement the following post-processing
steps:

1. If the model did not predict anything, the context window includes just the keyword.

2. If the model did not include the keyword in the context window, extend the context
window to include the keyword.

3. If there are holes in the predicted context window, find the largest chains and merge
them.

4. If the context window does not start and end with a NOUN, then search the 3 tokens
beneath to find the nearest NOUN and include it in the context window.

These steps ensure we will always include the keyword in the predicted context window
and yield overall better context windows.

4.7. Classifying context windows back to keywords

Another problem where clustering can be utilized is assigning a context window to the
corresponding keyword class and finding the keyword. So essentially to classify the context
windows back to classes and detect the keyword.

Our created method from future tasks can be used and finding the keyword can be done
by a simple matching similar to what we used for finding the keyword in a sentence once
the context window is assigned to a certain class. We tested this for a few examples and the
results are promising, but as mentioned for the newest version of the keywords the method
may need improvements.

28

4. Methodology

4.8. Overview of the context windows of all approaches on a
straightforward example

To conclude this chapter, we will propose a small overview over the context window of the
sentence "Lieferung, Handel, Planung und Fertigung von Maschinenkomponenten sowie
Stahlkonstruktionen." with the keyword "Handel" in table 4.1.

Basic Approach with x=3 Lieferung, Handel, Planung und
Naive Approach with x=3 Lieferung, Handel, Planung und Fertigung
Dependency Approach with 1 jump Lieferung, Handel, Planung
Random Forest Approach Lieferung, Handel, Planung und Fertigung
XGBoost Approach Handel, Planung
Gaussian Approach Lieferung, Handel, Planung und Fertigung von

Maschinenkomponenten sowie Stahlkonstruktionen

Table 4.1.: Overview of all approaches on a straightforward example

As you can see in 4.1, the context window of the Gaussian Approach is very large and con-
tains unnecessary tokens. Whereas the context window of XGBoost is very small containing
only 3 tokens. The manual approaches yield decent context windows as well as the Random
Forest Approach.

29

5. Results

In this chapter, we will discuss the results of our different approaches using our hand-labeled
data set of the keyword classes A, B, C, D, and G. We used 150 descriptions for each class.
In the following, we will call a manual labeled data set that matches keywords of the class
A to D but not G, G data set. Similar for the respective classes. We will use these datasets to
evaluate the approaches.

Additionally, for each approach, we will evaluate the context windows on the 50 hand-
labeled data of the keyword set K, in the following called full_dataset.

For evaluation, we will use the metrics Precision (P), Recall (R), and F1. The formulas are
given in equation 5.1 with TP being True Positive, FP being False Positive and FN being False
Negative.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(5.1)

However, having a high F1, recall, and the precision score does not necessarily mean the
predicted context windows are optimal. For this purpose, we will additionally conduct a
survey where human experts will select the most appropriate context window for some
examples.

30

5. Results

5.1. Test Data set

Regarding the manual approaches, we predict the context windows of the respective data set
and compare these with the labeled context windows.

For each data set, we will evaluate the machine learning models on a test data set. The
results are shown in table 5.1.

The XGBoost Approach yields the second-highest precision and a similar F1 score as
RandomForest. Regarding the manual approaches, the Basic and Naive Approach yield very
similar results whereas the Dependency approach yields the worst precision but a higher F1
score than the Basic and Naive Approach.

Dataset Validation Test
Model P R F1 P R F1
Basic 72.45 48.92 58.40 72.49 52.24 60.72
Naive 72.45 48.92 58.40 72.49 52.23 60.72
Dependency 55.15 73.82 63.13 52.99 69.72 60.22
RandomForest 75.36 56.59 64.64 73.39 60.55 66.36
XGBoost 79.17 54.23 64.37 79.05 60.34 68.44
Gaussian 52.16 46.78 49.32 51.24 57.14 54.03

Table 5.1.: Results on the test and validation data set

Additionally, we evaluate each approach on the training set, as shown in table 5.2. The
Gaussian Approach yields very high scores overall despite not achieving high results in the
validation and test set.

Model P R F1
Basic 73.10 49.22 58.83
Naiv 73.10 49.22 58.83
Dep 59.05 74.34 65.82
RandomForest 82.19 63.90 71.90
XGBoost 87.72 96.63 73.76
Gaussian 91.32 95.81 93.41

Table 5.2.: Results on the training data set

Further, we evaluate whether the post-processing does improve the results for the machine
learning models, the results on the validation set are shown in table 5.3.

PP denotes using post-processing and we shorten RandomForest to RF to improve readabil-
ity.

31

5. Results

Table 5.3 shows that the the RandomForest Approach and the XGBoost Approach perform
regarding the F1 score slightly better with the post-processing step included whereas the
Gaussian Approach has the same result.

The RandomForest Approach and the XGBoost Approach both have a significantly lower
precision and a considerably higher recall with post-processing.

Model RF PP RF XGBoost PP XGBoost Gaussian PP Gaussian
P 75.36 84.61 79.17 88.63 52.16 52.15
R 56.59 50.64 54.23 43.09 46.78 46.78
F1 64.64 63.36 64.37 57.99 49.32 49.32

Table 5.3.: Results on the validation data set with and without post-processing

The results of the test data set are shown in table 5.4.
Table 5.4 shows that the RandomForest Approach performs slightly better without post-

processing regarding the F1 score, whereas the Gaussian and the XGBoost Approach both
perform better with post-processing.

The RandomForest Approach and the XGBoost Approach both have a significantly lower
precision and a considerably higher recall with post-processing whereas the Gaussian Ap-
proach has a higher precision and recall with the post-processing step included.

Model RF PP RF XGBoost PP XGBoost Gaussian PP Gaussian
P 73.39 82.67 79.05 87.02 51.24 49.79
R 60.55 58.00 60.34 52.88 57.14 50.53
F1 66.36 68.17 68.44 65.78 54.03 50.16

Table 5.4.: Results on the test data set with and without post-processing

32

5. Results

5.2. Cross Validation Data set

For the manual approaches, we will proceed as before.
Since we use the data sets for training for the machine learning approaches, we will adapt

the models to get a correct evaluation. We will train the models on the data sets with a
train/val split of 90% / 10% holding out the respective data set.

For example for data set A, the models are trained on the data sets B, C, D, and G, then we
will evaluate the data set A.

For the machine-learning models, we use post-processing to further enhance the prediction.

5.2.1. Evaluation on data set A

Table 5.5 shows the results of evaluating the data set A. The Gaussian Classifier yields very
bad results with an F1 score of only 45.88% whereas the XGBoost achieves an F1 score of
71.50%.

Model Basic Naive Dependency RandomForest XGBoost Gaussian
P 65.50 65.50 66.46 64.78 73.89 39.53
R 63.46 63.46 74.29 69.42 69.28 54.67
F1 64.47 64.47 70.16 67.02 71.50 45.88

Table 5.5.: Results on data set A

To compare if the post-processing did improve the predictions of the context windows, we
additionally run the models with and without post-processing, as shown in table 5.6.

The RandomForest Approach performs slightly better (F1 score 69.92%) without the post-
processing step, whereas the Gaussian Approach and the XGBoost Approach perform worse
without the post-processing regarding the F1 score.

The RandomForest Approach and the XGBoost Approach both have a significantly lower
precision and a considerably higher recall with post-processing. Whereas for the Gaussian
Approach, the precision and the recall are higher, with the recall being significantly higher
with post-processing.

Model RF PP RF XGBoost PP XGBoost Gaussian PP Gaussian
P 64.78 75.71 73.89 97.26 39.53 39.01
R 69.42 64.95 69.28 52.78 54.67 47.09
F1 67.02 69.92 71.50 68.42 45.88 42.67

Table 5.6.: Results on data set A with and without post-processing

33

5. Results

5.2.2. Evaluation on data set B

The next table 5.7 shows the results of evaluating the data set B. Again, the Gaussian Classifier
yields very bad results with an F1 score of only 48.73% whereas the XGBoost achieves an F1
score of 68.97%.

Model Basic Naive Dependency RandomForest XGBoost Gaussian
P 69.52 69.52 53.11 65.06 78.73 41.40
R 66.18 66.18 73.13 69.28 61.36 57.89
F1 67.81 67.81 61.53 67.10 68.97 48.73

Table 5.7.: Results on data set B

The difference of the machine learning models with and without post-processing is shown
in table 5.8.

Again, the Random Forest Approach performs better without the post-processing step,
whereas the XGBoost and Gaussian Approaches perform better with the post-processing step,
regarding the F1 score.

Similar to data set A, the RandomForest Approach and the XGBoost Approach both have a
significantly lower precision and a considerably higher recall with post-processing for data
set B. Whereas for the Gaussian Approach, the precision and the recall are higher, with the
recall being significantly higher with post-processing.

Model RF PP RF XGBoost PP XGBoost Gaussian PP Gaussian
P 65.06 79.35 78.73 86.13 41.40 39.96
R 69.28 61.63 61.368 51.47 57.89 50.80
F1 67.10 69.38 68.97 64.44 48.73 44.73

Table 5.8.: Results on data set B with and without post-processing

34

5. Results

5.2.3. Evaluation on data set C

The evaluation of the data set C is shown in table 5.9. The Gaussian Classifier now performs
better with an F1 score of 65.59%, outperforming the XGBoost Classifier which scores an F1
score of 62.87%. Regardless, the RandomForest Classifier achieves an F1 score of 70%. The
Basic and Naive Approach on the other hand only achieve a F1 score of 55.85%.

Model Basic Naive Dependency RandomForest XGBoost Gaussian
P 85.00 85.00 50.56 81.95 82.78 69.70
R 41.60 41.60 82.42 61.10 50.69 61.93
F1 55.85 55.85 62.67 70.00 62.87 65.59

Table 5.9.: Results on data set C

In table 5.10 the difference of the machine learning models with and without post-processing
is shown.

For data set C, the Random Forest and the Gaussian Approach perform better on the
F1 score with the post-processing step whereas the XGBoost has a lower F1 score with the
post-processing step.

Adding the post-processing step leads to a higher precision for the RandomForest and the
Gaussian Approach and a lower precision for the Gaussian Approach.

The recall on the other hand is higher without the post-processing step for all approaches.

Model RF PP RF XGBoost PP XGBoost Gaussian PP Gaussian
P 81.95 72.90 82.78 86.13 69.70 67.75
R 61.10 64.60 50.69 51.47 61.93 62.46
F1 70.00 68.50 62.87 64.44 65.59 64.53

Table 5.10.: Results on data set C with and without post-processing

35

5. Results

5.2.4. Evaluation on data set D

The Gaussian Classifier performs again only 45.15% on the F1 score for the data set D, as
shown in table 5.11. The XGBoost Classifier slightly outperforms the RandomForest Classifier
with an F1 score of 67.78%.

Model Basic Naive Dependency RandomForest XGBoost Gaussian
P 68.45 68.45 63.29 75.04 80.99 43.17
R 58.79 57.79 75.03 60.40 58.26 47.32
F1 62.67 62.67 68.66 66.93 67.78 45.15

Table 5.11.: Results on data set D

Table 5.12 shows the difference of the machine learning models with and without post-
processing.

Regarding the F1 score on data set D, all approaches perform better with the post-processing
step.

The XGBoost Approach scores significantly higher in precision with the post-processing
step, the Gaussian Approach slightly higher, and the XGBoost Approach lower.

The XGBoost and the Gaussian approaches both have a significantly higher recall with the
post-processing step whereas the RandomForest Approach has a slightly higher recall.

Model RF PP RF XGBoost PP XGBoost Gaussian PP Gaussian
P 75.04 70.47 80.99 85.15 43.17 41.89
R 60.40 60.99 58.26 46.37 47.32 41.14
F1 66.93 65.39 67.78 60.05 45.15 41.51

Table 5.12.: Results on data set D with and without post-processing

36

5. Results

5.2.5. Evaluation on data set G

The results of the last data set G are shown in table 5.13. The Gaussian Classifier performs a
bit better than the other classes with an F1 score of 53.43%, outperforming the XGBoost and
the RandomForest Classifier achieves only 50.64% and 55.68% each.

Model Basic Naive Dependency RandomForest XGBoost Gaussian
P 78.02 78.02 64.31 78.33 79.66 64.80
R 35.31 35.31 67.36 43.19 37.12 45.46
F1 48.62 48.62 65.80 55.68 50.64 53.43

Table 5.13.: Results on data set G

For data set G, the table 5.12 shows the difference of the machine learning models with
and without post-processing.

Similar to data sets A and B, the Random Forest Approach performs better without the
post-processing step, whereas the XGBoost and Gaussian Approaches perform better with
the post-processing step, regarding the F1 score.

Again mirroring the behavior of data sets A and B, the RandomForest Approach and the
XGBoost Approach both have a lower precision and a higher recall with post-processing for
the data set B. Similar trends are visible in the Gaussian Approach.

Model RF PP RF XGBoost PP XGBoost Gaussian PP Gaussian
P 78.33 83.93 79.66 88.69 64.80 66.84
R 43.19 42.19 37.12 32.44 45.46 43.86
F1 55.68 56.15 50.64 47.57 53.43 52.96

Table 5.14.: Results on data set G with and without post-processing

37

5. Results

5.3. Evaluation on data set K

To have a final evaluation of these approaches, it could make sense to compute the mean and
standard deviation of each data set.

Or, we could annotate a small sample of another data set and evaluate this data set. This
resembles the actual use case the most and we get the additional advantage of increasing the
training data.

So for evaluating the K data set, we will train the models on all classes A, B, C, D, and G
with a train/val split of 90% / 10% and evaluate on 50 data samples of class K.

The results are shown in table 5.15. The Gaussian Classifier performs the worst with an
F1 score of 50.74% and the XGBoost performs the best with an F1 score of 77.61%. The
Dependency Approach has a slightly worse F1 score of 68.42% than the Basic and Naive
Approach which scores 70.67%.

Model Basic Naive Dependency RandomForest XGBoost Gaussian
P 64.90 64.90 62.15 70.43 79.19 40.71
R 77.56 77.56 76.10 77.56 76.10 67.32
F1 70.67 70.67 68.42 74.48 77.61 50.74

Table 5.15.: Results on data set K

The last table 5.16 shows the difference of the machine learning models with and without
post-processing.

For the data set K, we trained the models with data sets A, B, C, D, and G and tested on
the data set K.

Despite leading the post-processing step for some data sets and approaches (mainly the
RandomForest Approach) to worse results than without post-processing, this does not seem
the case with the data set K.

Here, the post-processing leads to overall better precision, recall, and F1 values with
the highest difference of the F1 score with nearly 7% for the XGBoost Approach, a better
precision of 9% for the XGBoost Approach, and a better recall of approximately 9% for the
RandomForest Approach.

Model RF PP RF XGBoost PP XGBoost Gaussian PP Gaussian
P 70.43 67.79 79.19 70.34 40.71 39.41
R 77.56 68.78 76.10 70.73 67.32 59.02
F1 74.48 68.28 77.61 70.56 50.74 47.27

Table 5.16.: Results on data set K with and without post-processing

38

5. Results

5.4. Expert Evaluation

Scoring metrics like precision, recall and the F1 score have only limited informative value on
how effective and coherent the context windows are. Consulting human experts is crucial to
have a final evaluation of the quality of context windows.

For the expert evaluation, we extracted five random samples of each data set. We calculate
for each approach the context windows of each sample and summarize the results in an Excel
sheet. Additionally, we calculate for the approaches Basic Approach and Naive Approach
x=2 as well as x=3 with one jump each. A short excerpt of the Excel sheet is shown in figure
B.1 in the appendix B.

From this overview, we extract 18 sentences and present two possible context windows.
For each context window, we ask if it represents a suitable context window for the presented
sentence and also, which context window is preferred. In the following sections, we will
present the results.

Please note that these results are primarily answered by non-experts as we have not yet
collected enough answers from experts.

First, the questionnaire explains the task and what the experts should evaluate. The experts
should especially pay attention to these three requirements:

• The context window should contain the keyword which is highlighted by bold writing.

• The context window should make sense grammatically.

• The context window should be representative of classes of WZ2008.

We collected three answers in total as of today. The first context window is generated by
the RandomForest Approach, and the second context window by the Gaussian Approach,
both with post-processing. For some sentences, the context windows are the same.

The experts were asked if the first context window (generated by RandomForest) was
suitable as a first question and then if the second context window (generated by Gaussian)
was suitable as a second question. For the third question, the experts should specify if they
think the first context window is more suitable, the second, both, or neither. This is repeated
for all 18 sentences.

39

5. Results

An example sentence is: "Handel mit sowie die Entwicklung, Verarbeitung und Produktion
von Papier, papierähnlichen Produkten, Kunststoffen, Verpackung und EDV-Zubehör sowie
alle damit zusammenhängenden Tätigkeiten im weitesten Umfang."

Possible context windows are:
"Verarbeitung und Produktion" and "Handel mit sowie die Entwicklung, Verarbeitung und

Produktion von Papier".

Figure 5.1 shows the answers to whether context windows generated by the RandomForest
Approach are suitable or not. Out of 54 possible answers, the experts answered 17 times they
were suitable (31.5%) and 37 were not suitable (68.5%).

Figure 5.1.: Results of Expert Evaluation on RandomForest Appraoch

40

5. Results

Similarly, figure 5.2 shows the answers to whether context windows generated by the
Gaussian Approach are suitable or not. Out of 54 possible answers, the experts answered 32
times they are suitable (59.3%) and 22 they are not suitable (40.7%).

Figure 5.2.: Results of Expert Evaluation on Gaussian Appraoch

The last figure 5.3 shows the result of which approaches generate suitable context windows.
Out of 54 answers, the experts answered 5 times the RandomForest Approach generates
suitable context windows (9.3%), 15 times the Gaussian Approach (27.8%), 18 times neither
(29.6%) and 16 times both (33.3%).

Figure 5.3.: Overall Results of Expert Evaluation

41

6. Discussion

This chapter discusses the results of our thesis, mentions the challenges encountered and
proposes some approaches for future work.

6.1. Results

The Basic and the Naive Approach tend to have the same context window and therefore the
same precision, recall and F1 score. Since the Naive Approach is an extension of the Basic
Approach, this makes sense. The Naive Approach simply adds a dependency jump to expand
the context window. But since we chose x=3 as a size, the context window is with 7 tokens
already big enough to capture a possible jump.

One could add more jumps, but spaCy already sorts the children of a token from furthest
away to nearest, so one dependency jump already jumps to the furthest token. Tokens within
the already defined context window by the Basic Approach tend to be highly interconnected
so one jump tends to be enough to jump to the furthest point and additional jumps do not
alter the context window.

We could choose a smaller x and more jumps to create a more significant difference between
these two approaches but this leads to the same context windows as before for the Naive
Approach and worse context windows for the Basic Approach. Setting a higher x tends to
create too big context windows, especially for the Naive Approach since the jumps tend to
jump to almost the end of the sentence.

So we conclude that the Naive Approach does not improve the Basic Approach significantly.

The Dependency Approach on the other hand leads to a better recall, and worse precision
but overall to a better F1 score than the Basic and Naive Approaches. That is, the Dependency
Approach first jumps one time and when the reached token is a stop word, we jump again.
Even with configuring only one jump, this leads to very big context windows in some cases,
as explained before. This creates bad precision while maintaining a good recall.

The Machine Learning Approaches tend to score better in precision, recall and F1. Notice-
able is the bad performance of the Gaussian Approach when the test set is not in the same
distribution with a very good performance on the training set. This is explainable with the
function of the Gaussian Classifier. Since it assumes a normal distribution, outliers have a low
probability. Our data set can have, depending on the keyword class, very different features,
like the exact position of the keyword in a sentence.

By examining the resulting context windows of the Gaussian Approach further, we discover

42

6. Discussion

that the context windows are either suitable for including all relevant information, or no
context window was detected at all. Of course, this behavior drags down the metrics. The
Gaussian Approach does have higher scores on the data set C and when examining the
sentences of data set C further, we discover that many keywords are at the beginning of the
sentence. Since the Gaussian Approach tends to create longer context windows, for data
sets where the keyword is in the middle of the sentence this could lead to too big context
windows. Whereas for sentences where the keyword is at the beginning of a sentence, the
Gaussian Approach does not include too many tokens which leads to more accurate windows.

The XGBoost Approach tends to have a higher precision and a lower recall than the Ran-
domForest Approach. XGBoost optimizes misclassified predictions by retraining the last tree
that performed not well. Overall, the F1 score of the XGBoost Classifier is sometimes worse
and sometimes better than the RandomForest Classifier. Evaluating the data set K, XGBoost
has a higher F1 score.

The post-processing step tends to lower the precision and increase recall, meaning it
increases the chance to include tokens in context windows even if the tokens may not belong
to context windows. This could be further improved to include only meaningful tokens.

We experimented with leaving the last step of the post-processing out, i.e. do not necessarily
end the context window with a NOUN by searching the three next tokens for a NOUN. This
was not successful as the precision is still lower than without post-processing but now the F1
score is worse, i.e. the recall is less increased.

Still, on the data set K, including the post-processing increases recall, precision and F1
score, meaning that with more training and more data, the post-processing is more valuable.
One explanation is that with increasingly diverse data, the chance for "holes" in the context
window is increased since some classes tend to have their keyword in the beginning and
others at the end. Post-processing eliminates these holes. Additionally, with more training
the context windows will likely already end with a NOUN, meaning the post-processing step
will not include unnecessary tokens.

We do not have a significant number of participants for the expert evaluation. Additionally,
the answers were given by non-experts. Therefore, these conclusions are only preliminary.
Nonetheless, we can see a tendency for the Gaussian Approach instead of the RandomForest
Approach. The context windows generated by the Gaussian Approach tend to be longer and
in more detail than the ones generated by the RandomForest Approach. Therefore, we can
conclude that experts tend to prefer longer context windows.

For most of our labeled data, we preferred shorter context windows over longer ones.
The data set consists of many enumerations of the tasks of a company which means that
keywords that belong to different classes are quite near each other. For example, a significant
number of descriptions describe the company that manufactures a product and trades with it.
Manufacture ("Herstellung") and trade ("Handel") belong to the classes C and G respectively.

43

6. Discussion

Therefore, we preferred shorter context windows when labeling the data, whereas the experts
do not know which keywords may overlap and prefer longer context windows.

Further, the percentage of whether both context windows are preferred (33.3%) or neither
(29.6%) is quite similar, with a slightly higher percentage of both context windows. We
presume that we simply did not yet get enough feedback and with more reports, a more solid
trend will be visible.

All in all, we conclude that our approaches especially the machine learning approaches
are suitable for finding context windows around class-specific keywords. Through the post-
processing step, we ensure that the context windows are cohesive and always include the
keyword. With enough training, the Gaussian Approach may lead to better results and
generate suitable context windows. The RandomForest and XGBoost Approaches on the
other hand do not always predict optimal results, but more solid results overall.

Further, we can successfully detect the keywords given a context window using k-means,
as investigated on a small part of the data. Still, this may change when using the newest
version of the keywords.

6.2. Challenges

One of the major challenges we encountered was the fact that the data set consists of de-
scriptions of very varying lengths and features. For manual approaches as well as machine
learning models it was not trivial to find a suitable size of the context window. Even when
manually labeling the data, for some sentences the context window could span over almost
the whole sentence whereas some other descriptions are 5 sentences long.

Further regarding the data set, for very long sentences multiple keywords of diverse classes
could match. We paid attention to manually label different sentences, but when scaling for
the whole data set this could represent a problem for some machine learning models. A
solution could be to assume that a context window should not contain multiple sentences
and therefore, trim the description to contain only the same sentence the keyword is in. The
problem is, that the German language tends to use very long-running sentences and some
sentences are still too long. The data set contains many enumerations of different tasks of a
company that can span several lines.

Another challenge was the keyword was located more at the beginning, at the middle, or
at the end of the sentence, depending on the class. The Gaussian Classifier had difficulties
even finding the keyword, resulting in often empty context windows that we post-process
with to at least include the keyword. That, of course, dragged down the accuracy. So for
some sentences, the Gaussian Classifier could predict very good context windows whereas
for other sentences, the approach predicted an empty window.

44

6. Discussion

Regarding the expert evaluation, we simply do not have enough responses. Additionally,
larger context windows tend to be prioritized over smaller context windows. In the survey,
we did not include the possibility of multiple keywords in a sentence although our data set
often contains keywords belonging to different classes that are near each other like in an
enumeration. This could be an improvement for future work, as explained in the next section.

6.3. Future Work

For this thesis, we developed several approaches for classifying whether a token is in the
context or not. Another approach could be to find the start and the end of the context
window by classifying whether a token is the start or end or not. Since our descriptions have
very varying lengths, we concluded that this approach may be not suitable for our data but
future work could include further comparing and evaluating the approaches and looking for
alternatives.

We mainly used centered context windows for the manual approaches. By examining the
data more closely, we discover that significant context can be more to the left or more to the
right of the keyword depending on the class. We concluded that therefore, a center-based
approach would cover most cases, and we often jump to the right to cover more relevant
context. One could calculate the mean number of tokens on the right and left side of the
keyword that capture the context window and experiment with different numbers as the
initial window size. On the other hand, machine learning models do not require a predefined
number of tokens for each side and have already good results. Nonetheless, one could
compare an optimized version of the manual approaches with the machine learning models.

We merely implemented some basic machine learning models, so developing actual deep
learning models like Long Short-Term Memory (LSTM) and others could lead to much higher
results. Another notable approach could be to use semi-supervised learning, using the labeled
data as input and an unsupervised approach to scale for unseen data.

Additionally, labeling a subset of all 21 classes could lead to different results since some of
the descriptions of the classes are quite different in length, the location of the keyword, and
more. For example, comparing the results of data set C in table 5.9, we observe the Gaussian
Approach has a much higher F1 score than in other classes, as explained in the results section.

We used a premature release of the keywords for training, utilizing the newest version
that also contains a very wide range of keywords could lead to different results, especially
regarding the feature selection.

As for the pre- and post-processing, future work could include employing alternative
methods of clustering and also improving the post-processing depending on the models.

45

6. Discussion

The expert evaluation survey can be further improved to contain multiple keywords in
a sentence and include options that contain overlapping context windows as well as short
context windows.

46

7. Conclusion

This thesis develops several approaches for finding context windows given sentences and
keywords and constitutes the second part of the pipeline of the CreateData4AI project [1].

We researched approaches extensively for Word Sense Disambiguation and provided an
overview of well-established techniques as well as state-of-the-art approaches and answered
the first research question.

By first extensively researching suitable clustering techniques, we develop pre-processing
steps including classifying each description of the German Business Registry data set using
k-means algorithm according to the keyword classes. This concludes the second research
question.

As a subsequent step, we developed several approaches regarding extracting context
windows.

This includes manual approaches like the Basic Approach, Naive Approach and Depen-
dency Approach as well as several Machine Learning Approaches namely RandomForest
Approach, XGBoost Approach and Gaussian Approach. While the Gaussian Approach scores
very well on seen data, i.e. the training set, it is not suitable for the variety we deal with
in the test data set. The XGBoost Approach and the RandomForest Approach score better
overall given the data, whereas in expert evaluation the Gaussian Approach is preferred as it
leads to optimal windows but does not always predict windows.

These developed approaches are suitable for trimming context windows for text chunks
and whole sentences, which answers the third research question.

We manually labeled 800 descriptions extracted by the German Business Registry date
set and compared the classification approach of each token with the detection of the start
and end of the context window. While we did not implement the approach of detecting the
start and the end of the context window fitting for our data because of the variety, it could
be interesting to develop this approach further. Additionally, labeling more data to get a
subset of all classes could lead to different results, since the descriptions of some classes differ
strongly from other classes.

Further, we extracted suitable features for each Machine Learning Approach and developed
post-processing steps to further improve the context windows. We kept in mind that for
future models, these can be adapted to ensure optimal feature selection and post-processing.

Using the manually labeled descriptions for creating data sets, we use cross-validation to
evaluate each approach and additionally, label 50 descriptions of another class which we use
for a final evaluation. Additionally, we used an expert survey to analyze the context windows

47

7. Conclusion

created by the RandomForest Approach and the Gaussian Approach. Although we did not
collect enough responses, the Gaussian Approach seems to be preferred. This concludes the
last research question.

Finally, we use k-means to classify the context windows according to the keyword classes
and match the corresponding keyword of a context window. While generating satisfying
results, this may need adaptation for the newest version of the keywords.

48

A. Repository Link

The repository can be accessed using the following link:
https://gitlab.lrz.de/CreateData4AI/masterthesis-alexandra-seibicke

49

B. Excerpt of the Overview of all Approaches
on five samples

For each data set A, B, C, D, G and K, we extract five random samples and calculate the
context windows of each approach.

The data sets are used the same as in the previous chapters explained, for example for data
set A this means the models are trained on B, C, D and G and evaluated on A.

Data set K is never used for training, only for evaluating.
The figure B.1 shows an excerpt of the context windows.

Figure B.1.: Excerpt of the Overview of all Approaches on five samples

50

List of Figures

2.1. An "Is-A" relationship of an apple . 5
2.2. A simple Decision Tree . 7
2.3. A Neural Network [16] . 8

4.1. Example of the German Business Registry data set 17
4.2. Example of Seed Keywords . 17
4.3. Example of a context window with the Naive Approach 20
4.4. Example of a context window with the Dependency Approach 21
4.5. Feature Importance of the Random Forest Classifier 25
4.6. Feature Importance of the XGBoost Classifier . 26
4.7. Feature Importance of the Gaussian Classifier 27

5.1. Results of Expert Evaluation on RandomForest Appraoch 40
5.2. Results of Expert Evaluation on Gaussian Appraoch 41
5.3. Overall Results of Expert Evaluation . 41

B.1. Excerpt of the Overview of all Approaches on five samples 50

51

List of Tables

4.1. Overview of all approaches on a straightforward example 29

5.1. Results on the test and validation data set . 31
5.2. Results on the training data set . 31
5.3. Results on the validation data set with and without post-processing 32
5.4. Results on the test data set with and without post-processing 32
5.5. Results on data set A . 33
5.6. Results on data set A with and without post-processing 33
5.7. Results on data set B . 34
5.8. Results on data set B with and without post-processing 34
5.9. Results on data set C . 35
5.10. Results on data set C with and without post-processing 35
5.11. Results on data set D . 36
5.12. Results on data set D with and without post-processing 36
5.13. Results on data set G . 37
5.14. Results on data set G with and without post-processing 37
5.15. Results on data set K . 38
5.16. Results on data set K with and without post-processing 38

52

Bibliography

[1] CreateData4AI. url: https://wwwmatthes.in.tum.de/pages/nqpi6qljq0x9/CreateData4AI-
CD4AI (visited on 12/07/2023).

[2] R. Navigli. “Word Sense Disambiguation: A Survey”. In: ACM Comput. Surv. 41.2 (Feb.
2009). issn: 0360-0300. doi: 10.1145/1459352.1459355. url: https://doi.org/10.
1145/1459352.1459355.

[3] J. C. Mallery. “Thinking About Foreign Policy: Finding an Appropriate Role for Ar-
tificially Intelligent Computers”. In: 1988. url: https://api.semanticscholar.org/
CorpusID:107849961.

[4] G. A. Miller. “WordNet: a lexical database for English”. In: Communications of the ACM
38.11 (1995), pp. 39–41.

[5] M. Lesk. “Automatic sense disambiguation using machine readable dictionaries: how
to tell a pine cone from an ice cream cone”. In: Proceedings of the 5th annual international
conference on Systems documentation. 1986, pp. 24–26.

[6] Lesk’s Algorithm: A Method for Word Sense Disambiguation in Text Analytics. url: https://
towardsdatascience.com/lesks-algorithm-a-method-for-word-sense-disambiguation-
in-text-analytics-52c157a2fdff (visited on 12/07/2023).

[7] F. Viveros-Jiménez, A. Gelbukh, and G. Sidorov. “Simple window selection strategies for
the simplified lesk algorithm for word sense disambiguation”. In: Mexican International
Conference on Artificial Intelligence. Springer. 2013, pp. 217–227.

[8] R. Rada, H. Mili, E. Bicknell, and M. Blettner. “Development and application of a metric
on semantic nets”. In: IEEE transactions on systems, man, and cybernetics 19.1 (1989),
pp. 17–30.

[9] K. Mittal and A. Jain. “WORD SENSE DISAMBIGUATION METHOD USING SEMAN-
TIC SIMILARITY MEASURES AND OWA OPERATOR.” In: ICTACT Journal on Soft
Computing 5.2 (2015).

[10] V. Gujjar, N. Mago, R. Kumari, S. Patel, N. Chintalapudi, and G. Battineni. “A Literature
Survey on Word Sense Disambiguation for the Hindi Language”. In: Information 14.9
(2023). issn: 2078-2489. doi: 10.3390/info14090495. url: https://www.mdpi.com/2078-
2489/14/9/495.

[11] J. Q. Walker. “A node-positioning algorithm for general trees”. In: Software: Practice and
Experience 20.7 (1990), pp. 685–705.

53

https://wwwmatthes.in.tum.de/pages/nqpi6qljq0x9/CreateData4AI-CD4AI
https://wwwmatthes.in.tum.de/pages/nqpi6qljq0x9/CreateData4AI-CD4AI
https://doi.org/10.1145/1459352.1459355
https://doi.org/10.1145/1459352.1459355
https://doi.org/10.1145/1459352.1459355
https://api.semanticscholar.org/CorpusID:107849961
https://api.semanticscholar.org/CorpusID:107849961
https://towardsdatascience.com/lesks-algorithm-a-method-for-word-sense-disambiguation-in-text-analytics-52c157a2fdff
https://towardsdatascience.com/lesks-algorithm-a-method-for-word-sense-disambiguation-in-text-analytics-52c157a2fdff
https://towardsdatascience.com/lesks-algorithm-a-method-for-word-sense-disambiguation-in-text-analytics-52c157a2fdff
https://doi.org/10.3390/info14090495
https://www.mdpi.com/2078-2489/14/9/495
https://www.mdpi.com/2078-2489/14/9/495

Bibliography

[12] M. Galley, K. R. McKeown, E. Fosler-Lussier, and H. Jing. “Discourse Segmentation of
Multi-Party Conversation”. In: Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics. Sapporo, Japan: Association for Computational Linguistics,
July 2003, pp. 562–569. doi: 10.3115/1075096.1075167. url: https://aclanthology.
org/P03-1071.

[13] R. L. Rivest. “Learning Decision Lists”. In: Sponsored Paper, NSF Grant DCR-8607494,
ARO Grant DAAL03-86-K-0171 ve Siemens Corporation (2001).

[14] C. Kingsford and S. L. Salzberg. “What are decision trees?” In: Nature biotechnology 26.9
(2008), pp. 1011–1013.

[15] Gaussian Naive Bayes Explained With Scikit-Learn. url: https://builtin.com/artificial-
intelligence/gaussian-naive-bayes (visited on 12/02/2023).

[16] A Friendly Introduction to [Deep] Neural Networks. url: https://www.knime.com/blog/a-
friendly-introduction-to-deep-neural-networks (visited on 12/02/2023).

[17] NLP with CNNs. url: https://towardsdatascience.com/nlp-with-cnns-a6aa743bdc1e
(visited on 12/02/2023).

[18] Recurrent Neural Networks and Natural Language Processing. url: https://towardsdatascience.
com/recurrent-neural-networks-and-natural-language-processing-73af640c2aa1
(visited on 12/02/2023).

[19] T. Martín Wanton and R. Berlanga Llavori. “A clustering-based approach for unsuper-
vised word sense disambiguation”. In: (2012).

[20] R. Navigli and S. P. Ponzetto. “BabelNet: The automatic construction, evaluation and
application of a wide-coverage multilingual semantic network”. In: Artificial intelligence
193 (2012), pp. 217–250.

[21] M. Bevilacqua, T. Pasini, A. Raganato, and R. Navigli. “Recent Trends in Word Sense
Disambiguation: A Survey”. In: Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI-21. Ed. by Z.-H. Zhou. Survey Track. International Joint
Conferences on Artificial Intelligence Organization, Aug. 2021, pp. 4330–4338. doi:
10.24963/ijcai.2021/593. url: https://doi.org/10.24963/ijcai.2021/593.

[22] G. A. Miller, C. Leacock, R. Tengi, and R. T. Bunker. “A semantic concordance”. In:
Human Language Technology: Proceedings of a Workshop Held at Plainsboro, New Jersey,
March 21-24, 1993. 1993.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of deep bidirec-
tional transformers for language understanding”. In: arXiv preprint arXiv:1810.04805
(2018).

[24] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. “Improving language
understanding by generative pre-training”. In: (2018).

[25] J. Jia, W. Liang, and Y. Liang. A Review of Hybrid and Ensemble in Deep Learning for Natural
Language Processing. 2023. arXiv: 2312.05589 [cs.AI].

54

https://doi.org/10.3115/1075096.1075167
https://aclanthology.org/P03-1071
https://aclanthology.org/P03-1071
https://builtin.com/artificial-intelligence/gaussian-naive-bayes
https://builtin.com/artificial-intelligence/gaussian-naive-bayes
https://www.knime.com/blog/a-friendly-introduction-to-deep-neural-networks
https://www.knime.com/blog/a-friendly-introduction-to-deep-neural-networks
https://towardsdatascience.com/nlp-with-cnns-a6aa743bdc1e
https://towardsdatascience.com/recurrent-neural-networks-and-natural-language-processing-73af640c2aa1
https://towardsdatascience.com/recurrent-neural-networks-and-natural-language-processing-73af640c2aa1
https://doi.org/10.24963/ijcai.2021/593
https://doi.org/10.24963/ijcai.2021/593
https://arxiv.org/abs/2312.05589

Bibliography

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. “Attention is all you need”. In: Advances in neural information processing
systems 30 (2017).

[27] P. Rai and S. Singh. “A survey of clustering techniques”. In: International Journal of
Computer Applications 7.12 (2010), pp. 1–5.

[28] 8 Clustering Algorithms in Machine Learning that All Data Scientists Should Know. url:
https://www.freecodecamp.org/news/8- clustering- algorithms- in- machine-
learning-that-all-data-scientists-should-know/ (visited on 12/02/2023).

[29] K. Erk and S. Padó. “Exemplar-based models for word meaning in context”. In: Proceed-
ings of the acl 2010 conference short papers. 2010, pp. 92–97.

[30] W. B. Dolan. “Word sense ambiguation: clustering related senses”. In: COLING 1994
Volume 2: The 15th International Conference on Computational Linguistics. 1994.

[31] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy. SpanBERT: Improving
Pre-training by Representing and Predicting Spans. 2020. arXiv: 1907.10529 [cs.CL].

[32] M. Sung, P. Bagherzadeh, and S. Bergler. “CLaC at SemEval-2020 Task 5: Muli-task
Stacked Bi-LSTMs”. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation.
Ed. by A. Herbelot, X. Zhu, A. Palmer, N. Schneider, J. May, and E. Shutova. Barcelona
(online): International Committee for Computational Linguistics, Dec. 2020, pp. 445–
450. doi: 10.18653/v1/2020.semeval-1.54. url: https://aclanthology.org/2020.
semeval-1.54.

[33] Y. Sun, S. Wang, Y. Li, S. Feng, X. Chen, H. Zhang, X. Tian, D. Zhu, H. Tian, and H. Wu.
ERNIE: Enhanced Representation through Knowledge Integration. 2019. arXiv: 1904.09223
[cs.CL].

[34] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu. MASS: Masked Sequence to Sequence Pre-
training for Language Generation. 2019. arXiv: 1905.02450 [cs.CL].

[35] W. Chan, N. Kitaev, K. Guu, M. Stern, and J. Uszkoreit. KERMIT: Generative Insertion-
Based Modeling for Sequences. 2019. arXiv: 1906.01604 [cs.CL].

[36] S. B. S. Mugdha, S. M. Ferdous, and A. Fahmin. “Evaluating Machine Learning Al-
gorithms For Bengali Fake News Detection”. In: 2020 23rd International Conference on
Computer and Information Technology (ICCIT). 2020, pp. 1–6. doi: 10.1109/ICCIT51783.
2020.9392662.

[37] C. Kundu, R. K. Das, and K. Sengupta. “Implementation of Context Window and
Context Identification Array for Identification and Interpretation of Non Standard Word
in Bengali News Corpus”. In: International Journal of Computational Linguistics Research
4.4 (2013), pp. 159–171.

[38] S. Menini, A. P. Aprosio, and S. Tonelli. “Abuse is contextual, what about nlp? the
role of context in abusive language annotation and detection”. In: arXiv preprint
arXiv:2103.14916 (2021).

55

https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/
https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/
https://arxiv.org/abs/1907.10529
https://doi.org/10.18653/v1/2020.semeval-1.54
https://aclanthology.org/2020.semeval-1.54
https://aclanthology.org/2020.semeval-1.54
https://arxiv.org/abs/1904.09223
https://arxiv.org/abs/1904.09223
https://arxiv.org/abs/1905.02450
https://arxiv.org/abs/1906.01604
https://doi.org/10.1109/ICCIT51783.2020.9392662
https://doi.org/10.1109/ICCIT51783.2020.9392662

Bibliography

[39] M. A. Masood, R. A. Abbasi, and N. Wee Keong. “Context-Aware Sliding Window for
Sentiment Classification”. In: IEEE Access 8 (2020), pp. 4870–4884. doi: 10.1109/ACCESS.
2019.2963586.

[40] P. Lison and A. Kutuzov. “Redefining context windows for word embedding models:
An experimental study”. In: arXiv preprint arXiv:1704.05781 (2017).

[41] spaCy. url: https://spacy.io/ (visited on 12/02/2023).

[42] Prodigy. url: https://prodi.gy/ (visited on 12/02/2023).

[43] Radial Basis Function (RBF) Kernel: The Go-To Kernel. url: https://towardsdatascience.
com/radial-basis-function-rbf-kernel-the-go-to-kernel-acf0d22c798a (visited
on 12/02/2023).

56

https://doi.org/10.1109/ACCESS.2019.2963586
https://doi.org/10.1109/ACCESS.2019.2963586
https://spacy.io/
https://prodi.gy/
https://towardsdatascience.com/radial-basis-function-rbf-kernel-the-go-to-kernel-acf0d22c798a
https://towardsdatascience.com/radial-basis-function-rbf-kernel-the-go-to-kernel-acf0d22c798a

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Research Questions
	Thesis Outline

	Background
	Word Sense Disambiguation
	Knowledge-Based Approaches
	Machine Learning Approaches

	Overview of state-of-the-art approaches
	Clustering Techniques
	Hierarchical Clustering
	Partition Clustering
	Grid Clustering
	Density Based Clustering
	Probabilistic Clustering
	Exemplar-based Clustering
	Combining Word Sense Disambiguation Approaches with clustering techniques for Context Filtering

	Related Work
	Span Detection
	Masking
	Classifier
	Evaluating Context Windows

	Methodology
	Terminology
	Data set
	Pre-Processing
	Future Work

	Manual Approaches
	Basic Approach
	Naive Approach
	Dependency Approach

	Machine-Learning Approaches
	Feature Extraction
	Random Forest Approach
	XGBoost Approach
	Gaussian Approach

	Post-Processing
	Classifying context windows back to keywords
	Overview of the context windows of all approaches on a straightforward example

	Results
	Test Data set
	Cross Validation Data set
	Evaluation on data set A
	Evaluation on data set B
	Evaluation on data set C
	Evaluation on data set D
	Evaluation on data set G

	Evaluation on data set K
	Expert Evaluation

	Discussion
	Results
	Challenges
	Future Work

	Conclusion
	Repository Link
	Excerpt of the Overview of all Approaches on five samples
	List of Figures
	List of Tables
	Bibliography

